Cut-Admissibility as a Corollary of the Subformula Property

نویسندگان

  • Ori Lahav
  • Yoni Zohar
چکیده

We identify two wide families of propositional sequent calculi for which cut-admissibility is a corollary of the subformula property. While the subformula property is often a simple consequence of cutadmissibility, our results shed light on the converse direction, and may be used to simplify cut-admissibility proofs in various propositional sequent calculi. In particular, the results of this paper may be used in conjunction with existing methods that establish the subformula property, to obtain that cut-admissibility holds as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Consistency Implies Cut Admissibility

For any finite and consistent first-order theory, we can find a presentation as a rewriting system that enjoys cut admissibility. Since proofs are rarely built without context, it is essential to develop methods that are adapted to search for proofs in theories. For instance, SMT provers provide efficient tools. Nevertheless, they are restricted to some particular theories, such as linear arith...

متن کامل

Nested Sequents

We see how nested sequents, a natural generalisation of hypersequents, allow us to develop a systematic proof theory for modal logics. As opposed to other prominent formalisms, such as the display calculus and labelled sequents, nested sequents stay inside the modal language and allow for proof systems which enjoy the subformula property in the literal sense. In the first part we study a system...

متن کامل

One-step Heyting Algebras and Hypersequent Calculi with the Bounded Proof Property

We investigate proof-theoretic properties of hypersequent calculi for intermediate logics using algebraic methods. More precisely, we consider a new weakly analytic subformula property (the bounded proof property) of such calculi. Despite being strictly weaker than both cut-elimination and the subformula property this property is sufficient to ensure decidability of finitely axiomatised calculi...

متن کامل

Analytic Cut Trees

Smullyan maintains that the importance of cut-free proofs does not stem from cut elimination per se but rather from the fact that they satisfy the subformula property. In accordance with such a viewpoint in this paper we introduce analytic cut trees, a system from which cuts cannot be eliminated but satisfying the subformula property. Like tableaux analytic cut trees are a refutation system but...

متن کامل

Admissibility of Cut in Coalgebraic Logics

We study sequent calculi for propositional modal logics, interpreted over coalgebras, with admissibility of cut being the main result. As applications we present a new proof of the (already known) interpolation property for coalition logic and establish the interpolation property for the conditional logics CK and CK Id .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017